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Graph representations as two–distance sets

Two–distance sets

A set S in Euclidean space Rn is called a two-distance set, if there
are two distances a and b, and the distances between pairs of
points of S are either a or b.

If a two-distance set S lies in the unit sphere Sn−1, then S is called
spherical two-distance set.



Graph representations as two–distance sets

Euclidean representation of graphs

Let G be a graph on n vertices. Consider a Euclidean
representation of G in Rd as a two distance set. In other words,
there are two positive real numbers a and b with b ≥ a > 0 and an
embedding f of the vertex set of G into Rd such that

dist(f (u), f (v)) :=

{
a if uv is an edge of G
b otherwise

We will call the smallest d such that G is representable in Rd the
Euclidean representation number of G and denote it Erep(G ).



Graph representations as two–distance sets

Euclidean representation number of graphs

A complete graph Kn represents the edges of a regular
(n − 1)–simplex. So we have Erep(Kn) = n − 1. That implies

Erep(G ) ≤ n − 1

for any graph G on n vertices.



Graph representations as two–distance sets

Since for a two–distance set of cardinality n in Rd

n ≤ (d + 1)(d + 2)

2
.

we have

Erep(G ) ≥
√
8n + 1− 3

2
.



Graph representations as two–distance sets

Einhorn and Schoenberg work

Einhorn and Schoenberg (ES66) proved that

Theorem

Let G be a simple graph on n vertices. Then Erep(G ) = n − 1 if
and only if G is a disjoint union of cliques.



Graph representations as two–distance sets

Einhorn and Schoenberg work on two–distance sets (1966)

Denote by Σn the number of all two–distance sets with n vertices in
Rn−2. Then

Σn = Γn − p(n),

where Γn is the number of all simple undirected graphs and p(n) is
the number of unrestricted partitions of n.

|Γ4| = 11, |Γ5| = 34, |Γ6| = 156, |Γ7| = 1044, ...

p(4) = 5, p(5) = 7, p(6) = 11 , p(7) = 15, ...

|Σ4| = 6, |Σ5| = 27, |Σ6| = 145, |Σ7| = 1029, ...



Graph representations as two–distance sets
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Graph representations as two–distance sets

Let S = {p1, . . . , pn} in Rn−1. Denote dij := dist(pi , pj).
Consider the Cayley–Menger determinant

CS :=

∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 ... 1
1 0 d2

12 ... d2
1n

1 d2
21 0 ... d2

2n
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
1 d2

n1 d2
n2 ... 0

∣∣∣∣∣∣∣∣∣∣∣∣
Let S be a two-distance set with a = 1 and b > 1. Then for i 6= j ,

d2
ij = 1 or d2

ij = b2

CS is a polynomial in t = b2.

Denote this polynomial by C (t).



Graph representations as two–distance sets

V 2
n−1(S) =

(−1)n Cs

2n−1 ((n − 1)!)2

Actually, Einhorn and Schoenberg considered the discriminating
polynomial D(t) that can be defined through the Gram
determinant. It is known that

C (t) = (−1)nD(t)



Graph representations as two–distance sets

Let G be a simple graph. Then

CG (t) := C (t)

is uniquely defined by G .

Suppose there is a solution t > 1 of CG (t) = 0.

Definition

Denote by τ1 the smallest root t of CG such that t > 1.

µ(G ) denote the multiplicity of the root τ1.

If for all roots t of CG we have t ≤ 1, then we assume that
µ(G ) := 0.



Graph representations as two–distance sets

The graph complement of G

If µ(G ) > 0, then τ0(G ) := 1/τ1(G ) is a root of CḠ (t) and
τ1(Ḡ ) = 1/τ0(G ). Note that there are no more roots of CG (t) on
the interval [τ0(G ), τ1(G )].

CḠ (t) is the reciprocal polynomial of CG (t), i.e.

CḠ (t) = tkCG (1/t), k = degCG (t).



Graph representations as two–distance sets

The Einhorn–Schoenberg theorem

Theorem

Let G be a simple graph on n vertices. Then

Erep(G ) = n − µ(G )− 1

If µ(G ) > 0, then a minimal Euclidean representation of G is
uniquely define up to isometry.



Graph representations as two–distance sets

C1(t) = t2(2− t), C2(t) = t(3− t), C3(t) = −t2 + 4t − 1
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Graph representations as two–distance sets

C4(t) = t2(3−t), C5(t) = (t+1)(3t−t2−1), C6(t) = −t2+4t−1
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Graph representations as two–distance sets

G = K2,...,2

Theorem

Let G be a complete m–partite graph K2,...,2. Then Erep(G ) = m
and a minimal Euclidean representation of G is a regular
cross–polytope.

Proof.

We have n = 2m and

CG (t) = 2m tm(2− t)m−1.

Then τ1 = 2 and µ(G ) = m − 1. Thus, Erep(K2,...,2) = m.

V. Alexandrov (2016)



Graph representations as two–distance sets

G = K2,...,2: geometric proof

Lemma

Let for sets X1 and X2 in Rd there is a > 0 such that
dist(p1, p2) = a for all p1 ∈ X1, p2 ∈ X2.
Then both Xi are spherical sets and the affine spans aff(Xi ) in Rd

are orthogonal each other.

Let S := f (V (G )) in Rd . Then Rd can be split into the orthogonal
product

∏m
i=1 Li of lines such that for Si := S ∩ Li we have

|Si | = 2. Thus, d = m and S is a regular cross–polytope.



Graph representations as two–distance sets

Spherical representations of graphs

Let f be a Euclidean representation of a graph G on n vertices in
Rd as a two distance set. We say that f is a spherical
representation of G if the image f (G ) lies on a (d − 1)–sphere in
Rd . We will call the smallest d such that G is spherically
representable in Rd the spherical representation number of G and
denote it Srep(G ).

Nozaki and Shinohara (2012) using Roy’s results (2010) give a
necessary and sufficient condition of a Euclidean representation of a
graph G to be spherical.

We define a polynomial MG (t) and show that a Euclidean
representation is spherical if and only if the multiplicity of τ1(G ) is
the same for CG (t) and MG (t)



Graph representations as two–distance sets

Spherical representations of graphs

Let S = {p1, . . . , pn} be a set in Rn−1. As above
dij := dist(pi , pj). Let

MS :=

∣∣∣∣∣∣∣∣∣∣
0 d2

12 ... d2
1n

d2
21 0 ... d2

2n
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
d2
n1 d2

n2 ... 0

∣∣∣∣∣∣∣∣∣∣



Graph representations as two–distance sets

The circumradius of a simplex

It is well known, that if the points in S form a simplex of dimension
(n − 1), the radius R of the sphere circumscribed around this
simplex is given by

R2 = −1
2
MS

CS
.



Graph representations as two–distance sets

Spherical representations of graphs

For a given graph G we denote by MG (t) the polynomial in t = b2

that defined by MS . Let

FG (t) := −1
2
MG (t)

CG (t)
.

If G is a graph with µ(G ) > 0 and FG (τ1) <∞, then denote
R(G ) :=

√
FG (τ1). Otherwise, put R(G ) :=∞.

We will call R(G ) the circumradius of G .



Graph representations as two–distance sets

Spherical representations of graphs

Theorem

Let G be a graph on n vertices with R(G ) <∞. Then
Srep(G ) = n − µ(G )− 1, otherwise Srep(G ) = n − 1.



Graph representations as two–distance sets

The circumradius of a graph

Theorem

R(G ) ≥ 1/
√
2.

It is not clear what is the range of R(G )? If R(G ) <∞, then for a
fixed n there are only finitely many cases. Thus the range is a
countable set.

Open question. Suppose R(G ) <∞. What is the upper bound of
R(G )? Can R(G ) be greater than 1?



Graph representations as two–distance sets

J–spherical representation of graphs

We have R(G ) ≥ 1/
√
2. Now consider the boundary case

R(G ) = 1/
√
2.

Definition

Let f be a spherical representation of a graph G in Rd as a two
distance set. We say that f is a J–spherical representation of G if
the image f (G ) lies in the unit sphere Sd−1 and the first
(minimum) distance a =

√
2.

Theorem

For any graph G 6= Kn there is a unique (up to isometry)
J–spherical representation.



Graph representations as two–distance sets

J–spherical representation of graphs

The uniqueness of a J–spherical representation of G 6= Kn shows
that the following definition is correct.

Definition

Jrep(G ) = J–spherical representation dimension
b∗(G ) = the second distance of this representation.

If G is the pentagon, then Srep(G ) = 2 < Jrep(G ) = 4.

Theorem

Let G 6= Kn be a graph on n vertices. If R(G ) = 1/
√
2, then

Jrep(G ) = n − µ(G )− 1, otherwise Jrep(G ) = n − 1.



Graph representations as two–distance sets

Representation numbers of the join of graphs

Recall that the join G = G1 + G2 of graphs G1 and G2 with disjoint
point sets V1 and V2 and edge sets E1 and E2 is the graph union
G1 ∪ G2 together with all the edges joining V1 and V2.



Graph representations as two–distance sets

Representation numbers of the join of graphs

Definition

We say that G on n vertices is J–simple if Jrep(G ) = n − 1.

Theorem

Let G := G1 + . . .+ Gm. Suppose all Gi are J–simple and

b∗(G1) = . . . = b∗(Gk) < b∗(Gk+1) ≤ . . . ≤ b∗(Gm).

Then

Jrep(G ) = Srep(G ) = n − k , Erep(G ) = n −max(k , 2),

where n denote the number of vertices of G .



Graph representations as two–distance sets

Representation numbers of complete multipartite graphs

Corollary

Let G be a complete multipartite graph Kn1...nm . Suppose

n1 = . . . = nk > nk+1 ≥ . . . ≥ nm.

Let n := n1 + . . .+ nm. Then
1 If k = 1, then Erep(G ) = n − 2, otherwise Erep(G ) = n − k ;

2 Srep(G ) = n − k;

3 Jrep(G ) = n − k .

Note that Statement 1 in the Corollary first proved by Roy (2010).



Representing graphs by congruent sphere packings

Contact graph

Let X be a finite subset of a metric space M. Denote

ψ(X ) := min
x ,y∈X

{dist(x , y)}, where x 6= y .

The contact graph CG(X ) is a graph with vertices in X and edges
(x , y), x , y ∈ X , such that dist(x , y) = ψ(X ).
In other words, CG(X ) is the contact graph of a packing of spheres
of diameter ψ(X ) with centers in X .



Representing graphs by congruent sphere packings

Euclidean representations

M = Rd and M = Sd−1. Let G = (V ,E ) be a simple graph with
at least one edge. Let f : V → Rd be a minimal Euclidean contact
graph representation. Then denote the dimension d by dimE(G ).

Theorem

Let G be a graph on n vertices. Let G 6= Kn. Then

dimE(G ) ≤ n − 2.



Representing graphs by congruent sphere packings

Spherical representations

Let X be a spherical representation of G in Sd−1, i.e. CG(X ) = G .
Denote by dimS(G , θ) the smallest dimension d such that
ψ(X ) = θ. The dimension of a minimal spherical contact graph
representation of G we denote dimS(G ),

dimS(G ) := min
0<θ<θ0

dimS(G , θ), θ0 := arccos(−1/(n − 1)).

Theorem

Let G = (V ,E ) be a graph on n vertices. Let 0 < θ < θ0. Then

dimS(G , θ) ≤ n − 1.



Representing graphs by congruent sphere packings

Join of graphs

The orthogonality lemma implies explicit formulas for the graph
join and multipartite graphs Kn1...nm .



Steiner’s porism and Soddy’s hexlet

Steiner’s porism

If a Steiner chain is formed from one starting circle, then a Steiner
chain is formed from any other starting circle.
Gбbor Damбsdi



Steiner’s porism and Soddy’s hexlet

Steiner’s chain



Steiner’s porism and Soddy’s hexlet

Steiner’s chain



Steiner’s porism and Soddy’s hexlet

Soddy’s hexlet

Soddy’s hexlet is a chain of six spheres each of which is tangent to
both of its neighbors and also to three mutually tangent given
spheres.



Steiner’s porism and Soddy’s hexlet

Soddy’s hexlet



Steiner’s porism and Soddy’s hexlet

Inversion T

Let S1 and S2 be spheres in Rn. Consider two cases:
(i) S1 and S2 are tangent;
(ii) S1 and S2 do not touch each other.
In case (i) let O be the contact point of these spheres and if we
apply the sphere inversion T with center O and an arbitrary radius
ρ, then S1 and S2 become two parallel hyperplanes S ′1 and S ′2.
In case (ii) we can use the famous theorem: There is T that invert
S1 and S2 into a pair of concentric spheres S ′1 and S ′2.

Lemma

The radius rT of S ′ = T (S) is the same for all spheres S that are
tangent to S1 and S2.



Steiner’s porism and Soddy’s hexlet

F–kissing arrangements and spherical codes

Let F = {S1, . . . ,Sm}, 2 ≤ m < n + 2, be a family of m spheres in
Rn such that S1 and S2 are non–intersecting or tangent spheres.
We say that a set C of spheres in Rn is an F–kissing arrangement if
(1) each sphere from C is tangent all spheres from F ,
(2) any two distinct spheres from C are non–intersecting.

Theorem

For a given F the inversion T defines a one–to–one correspondence
between F–kissing arrangements and spherical ψF–codes in Sd−1,
where ψF ∈ [0,∞] is uniquely defined by F .



Steiner’s porism and Soddy’s hexlet

Analogs of Steiner’s porism

Theorem

Let F = {S1, . . . ,Sm}, 2 ≤ m < n + 2, be a family of m spheres in
Rn such that S1 and S2 are non–intersecting spheres. If a Steiner
packing is formed from one starting sphere, then a Steiner packing
is formed from any other starting packing.



Steiner’s porism and Soddy’s hexlet

Steiner’s packings

Proposition

If for a family F there exist a simplicial F–kissing arrangement
then we have one of the following cases

1 d = 2, ψF = 2π/k , k ≥ 3, and PF is a regular polygon with k
vertices.

2 ψF = arccos(−1/d) and PF is a regular d–simplex with any
d ≥ 2.

3 ψF = π/2 and PF is a regular d–crosspolytope with any
d ≥ 2.

4 d = 3, ψF = arccos(1/
√
5) and PF is a regular icosahedron.

5 d = 4, ψF = π/5 and PF is a regular 600–cell.



Steiner’s porism and Soddy’s hexlet

Analogs of Soddy’s hexlet

Theorem

Let 3 ≤ m < n + 2. Let X be a spherical ψm–codes in Sd−1, where
d := n + 2−m. Then for any family F of m mutually tangent
spheres in Rn there is an F–kissing arrangement that is
correspondent to X .
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